Generalized noncentral hermite and laguerre polynomials in multiple matrices
نویسندگان
چکیده
منابع مشابه
Integral representations for multiple Hermite and multiple Laguerre polynomials
converges. Random matrices with external source were introduced and studied by Brézin and Hikami [7, 8, 9, 10, 11], and P. Zinn-Justin [18, 19]. In what follows, we assume that A hasm distinct eigenvalues a1, . . . , am of multiplicities n1, . . . , nm. We consider m fixed and use multi-index notation ~n = (n1, . . . , nm) and |~n| = n1 + · · ·+ nm. The average characteristic polynomial P~n(x) ...
متن کاملMonogenic Generalized Laguerre and Hermite Polynomials and Related Functions
Abstract. In recent years classical polynomials of a real or complex variable and their generalizations to the case of several real or complex variables have been in a focus of increasing attention leading to new and interesting problems. In this paper we construct higher dimensional analogues to generalized Laguerre and Hermite polynomials as well as some based functions in the framework of Cl...
متن کاملThe Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملGeneralized Hermite Polynomials 1
The new method for obtaining a variety of extensions of Hermite polynomials is given. As a first example a family of orthogonal polynomial systems which includes the generalized Hermite polynomials is considered. Apparently, either these polynomials satisfy the differential equation of the second order obtained in this work or there is no differential equation of a finite order for these polyno...
متن کاملDeterminants and permanents of Hessenberg matrices and generalized Lucas polynomials
In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1994
ISSN: 0024-3795
DOI: 10.1016/0024-3795(94)90472-3